PhD Entrance test syllabus

School of Basic Sciences

Physics (50 marks)

Question paper will be set on **General Physics** at the **level of PG**, which will include the following:

Content:

- Quantum Mechanics
- Solid State Physics
- Materials Science
- Semiconductor
- Classical Mechanics

Chemistry (50 marks)

UNIT-1

Aromaticity

Basic reaction mechanism: SN1, SN2, SNi, E1, E2, Ecb

Reaction intermediates: Structures and stability of carbocation, carbanion, free radicals, carbene and nitrene

Stereochemistry: Optical activity and chirality in biphenyl compounds, allenes, spirane, cyclooctene, cyclophane and ansa compounds.

Reagents: Application of reducing and oxidizing agents.

Pericyclic reactions: [2+2] and [2+4] cycloaddition reactions, Electrocyclic reactions, Sigmatropic Rearrangements

Photochemical reactions: Norrish Type-I and II reactions, di-pi methane reactions

UNIT-2

Liquid state: Surface tension, viscosity, vapour pressure etc. Solid state: Crystal structures, Unit cells, and crystal defects

Gaseous state: Gas laws, kinetic theory of gases

Kinetics: Rate law and equations of zero order, first order, second order reactions, rate constant and half-life of zero order, first order, second order reactions

Thermodynamics: Zeroth Law of Thermodynamics, First Law of Thermodynamics, Entropy, Second law of Thermodynamics, Third Law of Thermodynamics; Cyclic Process, Isothermal Process, Adiabatic Process, Reversible and Irreversible Process

UNIT-3

Periodic properties, EAN rule, VSPER theory

Hard acid and base: Classification Pearson's concept of hardness and softness, application of HSAB principles

Coordination chemistry: Double salt, coordination complex, coordination number, coordination geometries, types of ligands, colour and magnetism in coordination complex, applications of important coordination compounds.

Organometallic Chemistry: Definition, nomenclature and types of organometallic reactions.

Bioinorganic chemistry: Important bioinorganic complexes and their significance

UNIT-4

Spectroscopy: Application of ¹H NMR, FTIR, Mass spectrometry

Analytical Chemistry: Basic concepts of accuracy, precision, standard

deviation and errors

Nanomaterials: Basics of 0D, 1D and 2D nanomaterials Green chemistry: Basic Principles of green chemistry

SYLLABUS

Unit-1

Analysis: Elementary set theory, finite, countable and uncountable sets, Real number system as a complete ordered field, Archimedean property, supremum, infimum.

Sequences and series, convergence, limsup, liminf.

Bolzano Weierstrass theorem, Heine Borel theorem.

Continuity, uniform continuity, differentiability, mean value theorem.

Sequences and series of functions, uniform convergence.

Riemann sums and Riemann integral, Improper Integrals.

Monotonic functions, types of discontinuity, functions of bounded variation, Lebesgue measure, Lebesgue integral.

Functions of several variables, directional derivative, partial derivative, derivative as a linear transformation, inverse and implicit function theorems.

Metric spaces, compactness, connectedness. Normed linear spaces. Spaces of continuous functions as examples.

Linear Algebra: Vector spaces, subspaces, linear dependence, basis, dimension, algebra of linear transformations.

Algebra of matrices, rank and determinant of matrices, linear equations.

Eigenvalues and eigenvectors, Cayley-Hamilton theorem.

Matrix representation of linear transformations. Change of basis, canonical forms, diagonal forms, triangular forms, Jordan forms.

Inner product spaces, orthonormal basis.

Quadratic forms reduction and classification of Quadratic forms.

Unit-2

Complex Analysis: Algebra of complex numbers, the complex plane, polynomials, power series, transcendental functions such as exponential, trigonometric and hyperbolic functions.

Analytic functions, Cauchy-Riemann equations.

Contour integral, Cauchy's theorem, Cauchy's integral formula, Liouville's theorem, Maximum modulus principle, Schwarz lemma, Open mapping theorem.

Taylor series, Laurent series, Calculus of residues.

Conformal mapping, Mobius transformations.

Algebra: Permutations, combinations, pigeon-hole principle, inclusionexclusion principle, derangements.

Fundamental theorem of arithmetic, divisibility in Z, congruences, Chinese Remainder Theorem, Euler's -Ø function, primitive roots.

Groups, subgroups, normal subgroups, quotient groups, homomorphisms, cyclic groups, permutation groups, Cayley's theorem, class equations, Sylow theorems.

Rings, ideals, prime and maximal ideals, quotient rings, unique factorization domain, principal ideal domain, Euclidean domain.

Polynomial rings and irreducibility criteria.

Fields, finite fields, field extensions, Galois Theory.

Topology: basis dense sets, subspace and product topology, separation axioms, connectedness and compactness.

Unit-3

Ordinary Differential Equations (ODEs):

Existence and uniqueness of solutions if initial value problems for first order ordinary differential equations, Singular solutions of first order ODEs, system of first order ODEs.

General theory of homogenous and non-homogeneous linear ODEs, variation of parameters, Sturm-Liouville boundary value problem, Green's function.

Partial Differential Equations (PDEs):

Lagrange and Charpit methods for solving first order PDEs, Cauchy problem for first order PDEs.

Classification of second order PDEs, General solution of higher order PDEs with constant coefficients, Method of separation of variables for Laplace, Heat and wave equations.

Numerical Analysis:

Numerical solutions of algebraic equations, Method of iteration and Newton—Raphson method, Rate of convergence, Solution of systems of linear algebraic equations using Gauss elimination and Gauss-Seidel methods, Finite differences, Lagrange, Hermite and spline interpolation, Numerical differentiation and integration, Numerical solutions of ODEs using Picard, Euler, modified Euler and Runge-kutta methods.

Calculus of variations:

Variation of a functional, Euler-Lagrange equation, Necessary and sufficient conditions for extrema. Variational methods for boundary value problems in ordinary and partial differential equations.

Linear integral Equations:

Linear integral equation of the first and second kind of Fredholm and Volterra type, Solutions with separable kernels. Characteristic numbers and Eigen functions, resolvent kernel.

Classical Mechanics:

Generalized coordinates, Lagrange's equations, Hamilton's canonical equations, Hamilton's principle and principle of least action. Two-dimensional motion of rigid bodies, Euler's dynamical equations for the motion of a rigid body about an axis, theory of small oscillations.

Unit-4

Descriptive statistics, exploratory data analysis

Sample space, discrete probability, independent events, Bayes theorem, random variables and distribution functions (univariate and multivariate); expectation and moments. Independent random variables, marginal and conditional distributions, Characteristic functions. Probability inequalities (Tchebyshef, Markov, Jensen). Modes of convergence, weak and strong laws of large numbers, Central Limit theorems (i.i.d. case).

Markov chains with finite and countable state space, classification of states, limiting behaviour of n-step transition probabilities, stationary distribution, Poisson and birth-and-death processes.

Standard discrete and continuous univariate distributions. Sampling distributions, standard errors and asymptotic distributions, distribution of order statistics and range.

Methods of estimation, properties of estimators, confidence intervals, Tests of hypotheses: most powerful and uniformly most powerful tests, likelihood ratio tests. Analysis of discrete data and chi-square test of goodness of fit. Large sample tests.

Simple nonparametric tests for one and two sample problems, rank correlation and test for independence. Elementary Bayesian inference.

Gauss-Markov models, estimability of parameters, best linear unbiased estimators, confidence intervals, tests for linear hypotheses. Analysis of variance and covariance. Fixed, random and mixed effects models, Simple and multiple linear regression. Elementary regression diagnostics. Logistic regression.

Multivariate normal distribution, Wishart distribution and their properties. Distribution of quadratic forms. Inference for parameter, partial and multiple correlation coefficients and related tests. Data reduction techniques: Principle component analysis, Discriminant analysis, Cluster analysis, Canonical correlation.

Simple random sampling, stratified sampling and systematic sampling. Probability proportional to size sampling. Ratio and regression methods.

Completely randomized designs, randomized block designs and Latinsquare designs. Connectedness and orthogonality of block designs, BIBD . 2k factorial experiments: confounding and construction. Hazard function and failure rates, censoring and life testing, series and parallel systems.

Linear programming problem, Simplex methods, duality. Elementary queuing and inventory models. Steady-state solutions of Markovian queuing models: M/M/1, M/M/1 with limited waiting space, M/M/C, M/M/C with limited waiting space, M/G/1.

All students are expected to answer questions from Unit I. Students in mathematics are expected to answer additional question form Unit II and III. Students with in statistics are expected to answer additional question from Unit IV.